Physics 250

Nanofabrication & Properties of Artificially Structured Materials
What are we talking about?
Nanostructures

nm constraints
Artificially Designed & Fabricated

Liu, UCD Phy250-1, 2011, NanoFab
Novel & Tunable Properties

Low dimensionality
Nanometer-scale entities

<table>
<thead>
<tr>
<th>Size</th>
<th>Characteristic Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-bulk</td>
<td>Mean free path</td>
</tr>
<tr>
<td>Behavior</td>
<td>Spin diffusion length</td>
</tr>
<tr>
<td></td>
<td>Fermi wavelength</td>
</tr>
<tr>
<td></td>
<td>Coherence length</td>
</tr>
<tr>
<td></td>
<td>......</td>
</tr>
</tbody>
</table>

Interplay of constituent materials
- Metal, semimetal, semiconductor, insulator
- Ferromagnet, antiferromagnet
- Superconductor
- 100% spin polarized material
 etc.

Surface & interface
Extra degrees of freedom
Types of Nanostructures

Features:
- Unique structures
- Interplay of materials
- Interface intensive

Degrees of freedom:
- Dimensionality
- Materials
- Entity size (nm)
- Patterning

2D Layers
1D Wires
0D Particles
Patterned Structures

Liu, UCD Phy250-1, 2011, NanoFab
Nanodots

Small area: 100µm x 100µm

E-beam lithography

Large area: 1cm x 1cm

Porous alumina shadow mask

Arbitrary shape, order

~60nm in size, ~ 10^{10}/cm^{2}, over 1cm^{2} area

Liu, UCD Phy250-1, 2011, NanoFab
Arts and Nanoscience
Magnetization Stabilization

Enhanced Squareness & Coercivity

Combat superparamagnetic limit

Liu, UCD Phy250-1, 2011, NanoFab
Fe Nanodots: Single Domain vs. Vortex State

Liu, UCD Phy250-1, 2011, NanoFab

Magnetic Nanoparticles

Core / Shell Structured Magnetic Nanoparticles
- Heterostructure: Close proximity of functionally different materials
- Core (Fe): Magnetic
- Shell (Au): Oxidation and corrosion-resistant Functionalization bio-compatible
- Potential applications: MRI agent Cell tagging & sorting Hyperthermia treatment Targeted drug delivery

Liu, UCD Phy250-1, 2011, NanoFab
Nanowires

Fabrication

Nanopore template

Electrodeposition

Arrays of 400nm Bi nanowires

A single 30nm Co-Cu nanowire

Liu, UCD Phy250-1, 2011, NanoFab
Multilayered Nanowires

Current Perpendicular to the Plane (CPP)

Current In the Plane (CIP)

High Resistance

Low Resistance

Giant Magnetoresistance:
(Subject of 2007 Nobel Prize in Physics)

Spin dependent transport.
Direct determination of spin diffusion length.

Liu, UCD Phy250-1, 2011, NanoFab
Semi-Metallic Nanowires

Large grain sizes

Classical & Quantum Size Effects

Large Magnetoresistance

Phys. Rev. B 58, R14681 (1998);

Liu, UCD Phy250-1, 2011, NanoFab
Layers & Supperlattices

Growth:
- Sputtering
- Evaporation
- MBE
- Electrodeposition

Cu(5nm)/Ni(1nm) Multilayer

X-ray diffraction pattern of a FeF$_2$/Fe bilayer film

Liu, UCD Phy250-1, 2011, NanoFab
Example: 2-Dimensional Layers

Single crystal bismuth thin film

Liu, UCD Phy250-1, 2011, NanoFab
Magnetic Multilayers

Free FM
Exchange field $H_E=0$
Small coercivity H_C

Pinned FM
Large H_E
Large H_C

Spin Valves

Magnetic RAM

Read Head

Liu, UCD Phy250-1, 2011, NanoFab
Patterned Structures

Realized over 1cm², 100 billion holes

Liu, UCD Phy250-1, 2011, NanoFab
Thin Films with Perpendicular Anisotropy

Manipulating reversal via patterning

Liu, UCD Phy250-1, 2011, NanoFab
Typical Steps

Fabrication -
 Sputtering
 Evaporation
 MBE
 Laser Ablation
 Electrodeposition
 Chemical reactions

Characterization -
 X-ray diffraction
 Electron microscopy
 SEM
 TEM
 AFM/STM/MFM
 Profilometry

Processing -
 Photolithography
 E-beam lithography
 Self-assembly nanolithography

Measurements
 Magnetic
 SQUID
 VSM
 AGM
 MOKE
 Transport
In-House Facilities

Fabrication

- UHV multi-source magnetron sputtering
- Electron beam evaporation
- Thermal Evaporation
- Electrodeposition
- High temperature furnaces

Characterization

- X-ray diffraction
- Electron microscopy

Measurement

- Transport w/ cryostats
- SQUID magnetometer
- VSM/AGM magnetometer
- MOKE

Liu, UCD Phy250-1, 2011, NanoFab
On-Campus Facilities

Processing

• Class-100 cleanroom
• Photolithography
• E-beam lithography
• Reactive ion etching
• Ion milling
• Wire bonder

Fabrication

• Ion beam sputtering
• Electron beam evaporation

Characterization

• SEM
• TEM
• Profilometry
• Single-crystal diffractometer
<table>
<thead>
<tr>
<th>Goal</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinking & understanding</td>
<td>Assignments/readings</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Discussions</td>
</tr>
<tr>
<td>Presentation</td>
<td>Talks</td>
</tr>
<tr>
<td>Utilizing in research</td>
<td></td>
</tr>
</tbody>
</table>

Liu, UCD Phy250-1, 2011, NanoFab